Куда движется математика

E=mc^2 %)
(Заматеревший Свежак)
Аватара пользователя
Сообщения: 241
Зарегистрирован: 01-10-2006

Куда движется математика

Сообщение Vilux » 11-10-2006

Ниже приведена попытка аннотировать некую статью по теме будущего математики. Какие то отрывки могут быть немного несвязными. Но суть должна быть понятно. Итак:

На протяжении большей части XX столетия в «чистой» математике царило замечательное единодушие относительно того, как нужно представлять результаты. Весь предмет сводился к комплексу теорем, каждая из которых, в конечном счете, выводилась из фиксированного набора аксиом путем так называемого строгого логического доказательства. Для математиков, если только они не выходили за рамки математики, выступая в роли философов-любителей, принципиального различия между изобретением и открытием новых концепций не было.

Однако три кризиса, разразившиеся в ХХ веке, заставляют нас пересмотреть статус лавинообразно нарастающих объемов современных математических изысканий.

Поразительные прозрения Курта Гёделя в 1930-е годы привели к первому из трех кризисов, о которых идет речь. Он продемонстрировал, что в рамках любой достаточно богатой системы аксиом, найдутся утверждения, которые невозможно ни доказать, ни опровергнуть. Он же установил недоказуемость непротиворечивости арифметики.

С 1970-х годов в математике произошли еще два кризиса — и оба столь же непредсказуемые, как и кризис, вызванный работой Гёделя. Оба они связаны с проблемой переусложненности: доказательства стали настолько длинными и сложными, что ни один ученый не взял бы на себя смелость однозначно подтвердить или оспорить их правильность. Эти кризисы в философской литературе широко не обсуждались, хотя как раз они сказались на математическом мышлении и отношении математиков к своей науке значительно серьезнее, чем кризис, вызванный теоремами Гёделя.
В октябре 2004 года Королевское общество провело в Лондоне двухдневную дискуссию на тему «Природа математического доказательства», посвященную возможным путям выхода из вышеназванных кризисов. Дискуссия выявила широкий спектр мнений по этому вопросу — и ни одного приемлемого решения. Налицо была проблема серьезного взаимного непонимания между математиками и кибернетиками.

Первым примером крупной математической теоремы, для доказательства которой был применен компьютер, стала теорема о четырех цветах, доказанная в 1976 году Аппелом и Хакеном. Это сильно обеспокоило многих математиков по двум причинам. Во-первых, был выдвинут довод, что в корректности доказательства невозможно убедиться, не перепроверив вручную все итерации расчетов, проделанных машиной. На тот момент доказательства «правильных» теорем еще казались практически всем математикам безупречными. Возможность случайных ошибок в доказательствах признавалась, но их исправление считалось делом времени. Другое дело, что уже тогда некоторые математики стали задумываться не над тем, истинна ли та или иная теорема, а над тем, почему она считается истинной. Доказательства без понимания сути их не интересовали.

Третий кризис, о котором пойдет речь, также связан с излишней сложностью, но он в определенном смысле более серьезный.
От себя: его я приводить тут не стал по причине малопонятности для большинства людей.

Из работы Тьюринга следует, что существуют теоремы, доказательство которых во много раз длиннее их формулировки: фактически, соотношение этих двух длин может быть произвольно большим. Коэн считает, что «подавляющее большинство даже элементарных вопросов теории чисел средней сложности выходят за рамки разумного понимания»

В 1875 году любой грамотный математик мог полностью усвоить доказательства всех существовавших на тот период теорем за несколько месяцев. В 1975 году, за год до того, как была доказана теорема о четырех цветах, об этом уже не могло быть и речи, однако отдельные математики еще могли теоретически разобраться с доказательством любой известной теоремы. К 2075 году многие области чистой математики будут построены на использовании теорем, доказательства которых не сможет полностью понять ни один из живущих на Земле математиков — ни в одиночку, ни коллективными усилиями. Многие математики будут по-прежнему доказывать теоремы традиционными методами, но это будут уже лишь отдельные ностальгические островки в океане новой математической дисциплины. Будет широко применяться формальная проверка сложных доказательств, однако достижение общественного консенсуса будет столь же распространенным условием для принятия того или иного результата, что и строгое доказательство. Возможно также, что к тому времени грань между математикой и другими науками сотрется настолько, что философские вопросы об уникальном статусе предмета математики станут анахронизмом.

Вернуться в Чудеса Науки

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1